Chapter 2-3

Exercisel:
[5] <§§2.3, 2.6, 2.9> Add comments to the following MIPS code and de-

scribe in one sentence what it computes. Assume that $a0 and $al are used for
the input and both initially contain the integers a and b, respectively. Assume that
$v0 is used for the output.

add $t0, $zero, $zero
loop: beq $al, $zero, finish
add $t0, $t0, $al
sub fal, $al, 1
J loop
finish: addi $t0, $t0, 100
add $v0, $t0, $zero

Exercise 2:

[12] <§§2.3, 2.6, 2.9> The following code fragment processes two arrays and

produces an important value in register $v0. Assume that each array consists of
2500 words indexed 0 through 2499, that the base addresses of the arrays are stored
in $a0 and $al respectively, and their sizes (2500) are stored in $a2 and $a3, re-
spectively. Add comments to the code and describe in one sentence what this code
does. Specifically, what will be returned in $v0?

sli $a2, $az2, 2
s11 $a3, $a3, 2
add $v0, $zero, $zero
add $t0, $zero, $zero
outer: add $t4, $al0, $t0
Tw $td4, 0(%t4)
add $t1, $zero, $zero
inner: add $t3, sal, §tl
Tw $t3, 0($t3)
bne $t3, $t4, skip

addi fvO, $vO, 1
skip: addi$ tl, $tl, 4

bne $tl, $a3, inner

addi $t0, $t0, 4

bne $t0, $aZ, outer

Exercise 2.16

For these problems, the table holds various binary values for register $10. Given
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. | 0010 0100 1001 0010 O1C0 1001 0010 0100,
b. | 0101 1111 1011 1110 O1C0 0000 Q0CO 0000,

2.16.1 [5] <2.7> Suppose that register $ t0 contains a value from above and $t1
has the value

0011 1111 1111 1000 0000 0000 0000 00004,

Note the result of executing these instructions on particular registers. What is the
value of $t2 after the following instructions?

slt $t2, $t0, §tl
beq $t2, $0, ELSE
J DONE
ELSE: addi $t2, $0, 2
DONE:

2.16.2 [5] <2.7> Suppose that register $t0 contains a value from the table above
and is compared against the value X, as used in the MIPS instruction below. Note
the format of the slti instruction. For what values of X, if any, will $t2 be equal to 1?

s1tl $t2, $t0, X

2.16.3 [5] <2.7> Suppose the program counter (PC) is set to 0x0000 0020. Is it
possible to use the jump MIPS assembly instruction to get set the PC to the address
as shown in the data table above? Is it possible to use the branch-on-equal MIPS
assembly instruction to get set the PC to the address as shown in the data table
above?

For these problems, the table holds various binary values for register $t0. Given
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. | 0x00101000

b. | 0x80001000

2.16.4 [5] <2.7> Suppose that register $t0 contains a value from above. What is
the value of $t2 after the following instructions?

s1t $t2. 30, $t0
bne $t2, $0, ELSE
J DONE
ELSE: addi $t2, $t2, 2
DONE :

2.16.5 [5] <2.6, 2.7> Suppose that register $10 contains a value from above.
What is the value of $t2 after the following instructions?

s11 $%0, $%0, 2
st $t2, $t0, $0

2.16.6 [5] <2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is
it possible to use the jump (j) MIPS assembly instruction to get set the PC to the

address as shown in the data table above? Is it possible to use the branch-on-equal
(beq) MIPS assembly instruction to set the PC to the address as shown in the data
table above? Note the format of the J-type instruction.

Exercise 2.17

For these problems, there are several instructions that are not included in the MIPS
instruction set are shown.

subi $t2, $t3, & # R[rt] = RIrs] - SignExtImm
rpt $t2, loop f# if(R[rs]>0) RIrsl=Rlrs]-1, PC=PC+4+BranchAddr

b.

2.17.1 [5] <2.7> The table above contains some instructions not included in
the MIPS instruction set and the description of each instruction. Why are these
instructions not included in the MIPS instruction set?

2.17.2 [5] <2.7> The table above contains some instructions not included in the
MIPS instruction set and the description of each instruction. If these instructions
were to be implemented in the MIPS instruction set, what is the most appropriate
instruction format?

2.17.3 [5] <2.7> For each instruction in the table above, find the shortest
sequence of MIPS instructions that performs the same operation.

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. | LOOP: addi $s2, $s2, 2
subi tl, stl1, 1
bne $t1, $0, LOOP

DONE:

b. | LOOP: sl1t $t2, $0, stl
beq $t2, $0, DONE
subi $t1, stl, 1
addi $s2, $s2, 2
] Loop

DOKE:

2.17.4 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register $t1 is initialized to the value 10. What is the value in register $s2 assuming
the $52 is initially zero?

2.17.5 [5] <2.7> For each of the loops above, write the equivalent C code rou-
tine. Assume that the registers $s1, $s2, $t1,and $t2 are integers A, 3, 1, and
temp, respectively.

2.17.6 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register $t1 is initialized to the value N. How many MIPS instructions are executed?

Exercise 2.18

For these problems, the table holds some C code. You will be asked to evaluate these
C code statements in MIPS assembly code.

a. | for(i=0; i<a; i++)

d = [

b. for(i—-0; 1€a; T++)

far(j=0;: j<bs j++)
DI4*j1 =1 + j;

2.18.1 [5] <2.7> For the table above, draw a control-flow graph of the C code.

2.18.2 [5] <2.7> For the table above, translate the C code to MIPS assembly code.
Use a minimum number of instructions. Assume that the values of a, b, i, and j

are in registers $50, $51, $t0,and $t1, respectively. Also, assume that register $52
holds the base address of the array D.

2.18.3 [5] <2.7> How many MIPS instructions does it take to implement the
C code? If the variables a and b are initialized to 10 and 1 and all elements of D
are initially 0, what is the total number of MIPS instructions that is executed to
complete the loop?

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. addi $tl, %0, 50

LOOP: Tw $s1, 0($s0)
add $s2, $s2, $sl
Tw $s51, 4($s0)
add $s2., $s2, $sl
addi %$s0, %$s0, B
subi: $£1, #Ek, 4
bne $tl1, $0, LOOP

b. addi $tl, %0, $0

LOOP: 1w $s1, 0(%$s0)
add $s?2, $s2, $sl
addi $s0, $s0, 4
addi $tl1, #tl, 1
sTt1 $t2. il 100
bne $t2. $s0. LOOP

2.18.4 [5 <2.7>What is the total number of MIPS instructions executed?

2.18.5 [5]| <2.7> Translate the loops above into C. Assume that the C-level inte-
ger 1 is held in register $t1, $52 holds the C-level integer called result,and $s0
holds the base address of the integer MemArray.

2.18.6 [5] <2.7> Rewrite the loop to reduce the number of MIPS instructions
executed.

